How do you simplify #(-3 + 2i) / (2 - 5i)#?

1 Answer
Jun 30, 2016

Answer:

#(-3+2i)/(2-5i)=-16/29-11/29i#

Explanation:

To simplify #(-3+2i)/(2-5i)#, we need to multiply numerator and denominator by complex conjugate of the denominator i.e. here #2+5i#.

Hence, #(-3+2i)/(2-5i)=((-3+2i)(2+5i))/((2-5i)(2+5i))#

= #(-6-15i+4i+10i^2)/(4-25i^2)#

= #(-6-15i+4i-10)/(4+25)#

= #(-16-11i)/29=-16/29-11/29i #