# How do you simplify {4 (3-7) + 12}^2 / (-4) -3^3 using PEMDAS?

Feb 17, 2017

#### Explanation:

Step 1: ${\left(4 \left(3 - 7\right) + 12\right)}^{2} / - 4 - {3}^{3}$
Step 2: ${\left(4 \cdot \left(- 4\right) + 12\right)}^{2} / - 4 - 27$
Step 3: ${\left(- 16 + 12\right)}^{2} / - 4 - 27$
Step 4: ${\left(- 4\right)}^{2} / - 4 - 27$
Step 5: $- 4 - 27 = - 31$

Feb 17, 2017

See the entire simplification process below:

#### Explanation:

First, we need to process the inner Parenthesis (P) containing $\left(3 - 7\right) = - 4$:

${\left\{4 \times - 4 + 12\right\}}^{2} / - 4 - {3}^{3}$

Next, we can process the Multiplication (M) within the brackets or Parenthesis (P): $4 \times - 4 = - 16$

${\left\{- 16 + 12\right\}}^{2} / - 4 - {3}^{3}$

Then we can process the Addition (A) within the brackets (P) $\left\{- 16 + 12 = - 4\right\}$

${\left\{- 4\right\}}^{2} / - 4 - {3}^{3}$

Next, we can process the Exponents (E): ${\left\{- 4\right\}}^{2} = 16$ and ${3}^{3} = 27$:

$\frac{16}{-} 4 - 27$

The we can process the Division (D) - $\frac{16}{-} 4 = - 4$:

$- 4 - 27$

Now, we can complete the simplification by processing the Subtraction (S):

$- 4 - 27 = - 31$