How do you simplify: #4(x -1)^2 -3 (x+4)#? Algebra Polynomials and Factoring Multiplication of Polynomials by Binomials 1 Answer maganbhai P. Mar 3, 2018 #4x^2-11x-8# Explanation: We know that, #color(Blue)((A-B)^2=A^2-2AB+B^2)# So,#(x-1)^2=x^2-2x+1# Now, #4(x-1)^2-3(x+4)=4(x^2-2x+1)-3(x)-3(4)# #=4(x^2)+4(-2x)+4(1)-3x-12# #=4x^2-8x+4-3x-12# #=4x^2-8x-3x+4-12# #=4x^2-11x-8# Answer link Related questions What is FOIL? How do you use the distributive property when you multiply polynomials? How do you multiply #(x-2)(x+3)#? How do you simplify #(-4xy)(2x^4 yz^3 -y^4 z^9)#? How do you multiply #(3m+1)(m-4)(m+5)#? How do you find the volume of a prism if the width is x, height is #2x-1# and the length if #3x+4#? How do you multiply #(a^2+2)(3a^2-4)#? How do you simplify #(x – 8)(x + 5)#? How do you simplify #(p-1)^2#? How do you simplify #(3x+2y)^2#? See all questions in Multiplication of Polynomials by Binomials Impact of this question 1231 views around the world You can reuse this answer Creative Commons License