How do you simplify #(5-2x)^2#?

1 Answer
Jun 14, 2018

See a solution process below:

Explanation:

For this special case of quadratics we can use this rule to expand and simplify this expression:

#(color(red)(x) - color(blue)(y))^2 = (color(red)(x) - color(blue)(y))(color(red)(x) - color(blue)(y)) = color(red)(x)^2 - 2color(red)(x)color(blue)(y) + color(blue)(y)^2#

Substituting the values from the problem gives:

#(color(red)(5) - color(blue)(2x))^2 =>#

#(color(red)(5) - color(blue)(2x))(color(red)(5) - color(blue)(2x)) =>#

#color(red)(5)^2 - (2 * color(red)(5) * color(blue)(2x)) + color(blue)((2x))^2 =>#

#25 - 20x + 4x^2#

Or, in standard form:

#4x^2 - 20x + 25#