How do you simplify #64(x^{4}y^{3})^{\frac{5}{6}}#? Prealgebra Exponents, Radicals and Scientific Notation Exponents 1 Answer Shwetank Mauria Jun 23, 2017 #64(x^4y^3)^(5/6)=64x^3y^2root(3)xsqrty# Explanation: Remember #(ab)^m=a^mb^m# and #(a^m)^n=a^(mn)# Hence #64(x^4y^3)^(5/6)# = #64xx(x^4)^(5/6)xx(y^3)^(5/6)# = #64xx x^(4xx5/6)xxy^(3xx5/6)# = #64xx x^(20/6)xxy^(15/6)# = #64xx x^((color(red)2xx10)/(color(red)2xx3))xxy^((color(red)3xx5)/(color(red)3xx2))# = #64xx x^(10/3)xxy^(5/2)# = #64xx x^(3+1/3)xxy^(2+1/2)# = #64xx x^3x^(1/3)y^2y^(1/2)# = #64x^3y^2root(3)xsqrty# Answer link Related questions How do you simplify #c^3v^9c^-1c^0#? How do you simplify #(- 1/5)^-2 + (-2)^-2#? How do you simplify #(4^6)^2 #? How do you simplify #3x^(2/3) y^(3/4) (2x^(5/3) y^(1/2))^3 #? How do you simplify #4^3ยท4^5#? How do you simplify #(5^-2)^-3#? How do you simplify and write #(-5.3)^0# with positive exponents? How do you factor #12j^2k - 36j^6k^6 + 12j^2#? How do you simplify the expression #2^5/(2^3 times 2^8)#? When can I add exponents? See all questions in Exponents Impact of this question 1387 views around the world You can reuse this answer Creative Commons License