How do you simplify #7/8 + 1/5#?

1 Answer
May 17, 2018

Answer:

#=> 43/40#

Explanation:

We need to establish a common denominator.

To do this, we multiply each fraction by #1# because we do not want to change the expression that we have. We multiply by a specific form of the number #1# in order to obtain the common denominator.

#=>7/color(blue)8 + 1/color(red)5#

#=7/8*color(red)5/color(red)5 + 1/5*color(blue)8/color(blue)8#

notice how both fractions are multiplied by #1#, which means they are still the same value. However, we are changing the numerator and denominator of each fraction in order to be able to combine them.

#=35/40 + 8/40#

Now that the denominators are the same, we can combine the fractions

#=(35+8)/40#

#= 43/40#

Now we check to see if this can be simplified. It cannot, so that is our solution.