How do you simplify #(9-i)/(2-i)#?

1 Answer
Aug 10, 2018

#(19 + 7i)/5# or #19/5 + (7i)/5#

Explanation:

#(9-i)/(2-i)#

Multiply both numerator and denominator by the denominator's conjugate (2+i) to remove the #i# from the denominator:
#(9-i)/(2-i) color(blue)(*(2+i)/(2+i))#

Simplify using FOIL:
#(18 * +9i + -2i + -i^2)/(4 + 2i + -2i + -i^2)#

Combine like terms. We also know that #i^2# is #-1#, so:
#(18 + 7i - (-1))/(4 - (-1))#

Simplify:
#(18 + 7i + 1)/(4 + 1)#

#(19 + 7i)/5#

Hope this helps!