How do you simplify and write #c^-3/d^-5# with positive exponents?

2 Answers
Feb 20, 2017

Answer:

See the entire simplification process below:

Explanation:

We will use these two rules of exponents to eliminate the negative exponents:

#x^color(red)(a) = 1/x^color(red)(-a)# and #1/x^color(blue)(a) = x^color(blue)(-a)#

#c^color(red)(-3)/d^color(blue)(-5) = d^color(blue)(- -5)/c^color(red)(- -3) = d^color(blue)(5)/c^color(red)(3)#

Feb 20, 2017

Answer:

#d^5/c^3#

Explanation:

#c^-3/d^-5#

#:.=c^-3-:d^-5#

#:.=1/c^3-:1/d^-5#

#:.=1/c^3-:(1/1)/(d^5)#

#:.=1/c^3 xx (1/1 xx d^5/1)#

#:.=1/c^3 xx d^5/1#

#:.=d^5/c^3#