How do you simplify #f(theta)=cot(theta/4)-tan(theta/2+pi/2)# to trigonometric functions of a unit #theta#?

1 Answer
Mar 1, 2017

#f(theta)=cot(theta/4)-tan(theta/2+pi/2)=sqrt(2/(1-costheta))#

Explanation:

As #tan(90^@+A)=-cotA#, #tan(theta/2+pi/2)=-cot(theta/2)#

Hence #f(theta)=cot(theta/4)-tan(theta/2+pi/2)#

= #cot(theta/4)-cot(theta/2)#

Further #cot(A/2)=cos(A/2)/sin(A/2)=(2cos^2(A/2))/(2sin(A/2)cos(A/2)#

= #(1+cosA)/sinA=cscA+cotA#

Also #sin(A/2)=sqrt((2sin^2(A/2))/2)=sqrt((1-(1-2sin^2(A/2)))/2)#

= #sqrt((1-cosA)/2)# .......................(A)

Hence, #cot(theta/4)-cot(theta/2)#

= #csc(theta/2)+cot(theta/2)-cot(theta/2)#

= #csc(theta/2)#

= #1/sin(theta/2)#

= #sqrt(2/(1-costheta))# (using (A))