How do you simplify #\frac { \cos ^ { 2} \alpha - \sin ^ { 2} \alpha } { \sin ^ { 4} \alpha - \cos ^ { 4} \alpha }#?
2 Answers
This equals
Explanation:
It's all about factoring the difference of squares.
#=((cosalpha + sin alpha)(cosalpha - sin alpha))/((sin^2alpha - cos^2alpha)(sin^2alpha + cos^2alpha))#
Because
#=((cosalpha + sin alpha)(cosalpha- sin alpha))/(sin^2alpha - cos^2alpha)#
#=((cosalpha + sin alpha)(cosalpha - sin alpha))/((sin alpha + cosalpha)(sin alpha - cosalpha)#
#= -1#
Hopefully this helps!
Given:
Factor the denominator, using the pattern (a^4-b^4) = (a^2-b^2)(a^2+b^2):
A factor in the denominator cancels the numerator:
Use the identity