How do you simplify #(p+2)(p+6)#?

1 Answer
Oct 1, 2016

Answer:

#(p+2)(p+6) = p^2+8p+12#

Explanation:

If you find it helpful you can use the FOIL ("First", "Outside", "Inside", "Last") mnemonic to enumerate all the combinations of terms from the two binomial factors:

#(p+2)(p+6) = overbrace((p*p))^"First" + overbrace((p*6))^"Outside" + overbrace((2*p))^"Inside" + overbrace((2*6))^"Last"#

#color(white)((p+2)(p+6)) = p^2+6p+2p+12#

#color(white)((p+2)(p+6)) = p^2+8p+12#