How do you simplify #root7(640 )#?
1 Answer
Dec 23, 2016
Explanation:
There are a couple of properties that hold for any
#root(n)(ab) = root(n)(a)root(n)(b)" "# when#a, b >= 0#
#root(n)(a^n) = a" "# when#a >= 0#
Factorising
#640 = 2^7*5#
So:
#root(7)(640) = root(7)(2^7*5) = root(7)(2^7)*root(7)(5) = 2root(7)(5)#