How do you simplify #sqrt(28x^3y^4)#?

2 Answers
Apr 18, 2015

#sqrt(28x^3y^4)#

# = sqrt((7*4)(x^2*x)(y^2)^2)#

# = sqrt((7*2^2)(x^2*x)(y^2)^2)#

#color(green)( = 2*x*y^2sqrt(7x)# is the Simplified Form of #sqrt(28x^3y^4)#

Sep 8, 2015

Answer:

Simplifying the values can work out here.

Explanation:

the above can also be written as #sqrt28sqrtx^3sqrty^4# for convenience.
1) #sqrt28#=2#sqrt7#
2) #sqrtx^3#=x#sqrtx#
3) #sqrty^4#= #y^2#
Hence on using 1,2 and 3 we get the answer=2x#y^2##sqrt7##sqrtx#
.......................................................................................................................
I hope this helps :)