How do you simplify # (sqrt(-4)+3)(2sqrt(-9)-1)#?
1 Answer
Mar 1, 2016
Explanation:
Recall the definition of
#i=sqrt(-1)#
This allows us to deal with square roots with negative numbers inside of them. The
#sqrt(-4)=sqrt(2^2xx-1)=2i#
#sqrt(-9)=sqrt(3^2xx-1)=3i#
Substituting this into the original expression, we get:
#=(2i+3)(2(3i)-1)#
#=(2i+3)(6i-1)#
Now, distribute using the FOIL method.
#=underbrace(2i * 6i)_ "First"+underbrace(2i * -1)_ "Outside"+underbrace(3 * 6i)_ "Inside"+underbrace(3 * -1)_ "Last"#
#=12i^2-2i+18i-3#
#=12i^2+16i-3#
However, we are not done, since
#=12(-1)+16i-3#
#=-15+16i#