How do you simplify #sqrt(400/5)#?

2 Answers
Mar 15, 2018

Answer:

See below.

Explanation:

#sqrt(400/5) = sqrt(400)/sqrt(5)#

#sqrt(400)/sqrt(5)=20/sqrt5#

#=20/sqrt(5) * sqrt(5)/sqrt(5)#

#=(20sqrt(5))/5 = 4sqrt5#

Mar 15, 2018

Answer:

#sqrt(400/5)=4sqrt(5)#

Explanation:

#sqrt(400/5)=sqrt(400)/sqrt(5)=20/sqrt(5)#

We want to rationalize the denominator. Here we are just getting rid of the square root, shown in blue.

#20/sqrt(5)=(20color(blue)(sqrt(5)))/(sqrt(5)*color(blue)(sqrt(5)))=(20sqrt5)/5=4sqrt(5)#