How do you simplify #sqrt(45n^5)#?

1 Answer
May 16, 2016

Answer:

#=3n^2sqrt (5n)#

Explanation:

#sqrt (45n^5#

Prime factorising #45:#

#45 = 3 * 3 * 5 = color(blue)(3^2) * 5#

The expression now becomes:
#sqrt (45n^5) = sqrt ( color(blue)(3^2) * 5 * color(blue)(n ^ 2 * n ^2) * n)#

#=color(blue)(3 * n * n ) sqrt (5n)#

#=3n^2sqrt (5n)#