How do you simplify #sqrt(72x^2 y^3)#?

1 Answer
Mar 14, 2016

#= 6 xy sqrt( 2 y#

Explanation:

#sqrt (72x^2y^3#

  • Simplifying #sqrt72 = sqrt (3*3*2*2*2) = sqrt(color(green)(3^2 *2^2) *2) = color(green)(3*2) sqrt2 =color(green)( 6) sqrt2#

The expression becomes:
#sqrt (72x^2y^3)=color(green)( 6) sqrt( 2 * x^2y^3#

#= 6 sqrt( 2 * color(blue)(x^2 * y ^ 2) * y^1#

#= 6 * color(blue)( x y ) sqrt( 2 * y^1#

#= 6 xy sqrt( 2 y#