How do you simplify #sqrt(9k^4)#?

2 Answers

Answer:

#sqrt(9k^4)=3k^2#

Explanation:

The given is a radical expression

#sqrt(9k^4)#

#sqrt(3^2*(k^2)^2)#

#sqrt(3^2)*sqrt((k^2)^2)#

#=3k^2#

God bless....I hope the explanation is useful.

Jul 9, 2016

Answer:

#3k^2#

Explanation:

#sqrt(a^b) = (a^b)^(1/2) = a^(b*1/2)#

The square root of #9# is #3#.

#sqrt(9k^4)#

#3sqrt(k^4)#

Using the concept from above:

#sqrt(k^4) = (k^4)^(1/2) = k^(4*1/2) = k^(4/2) = k^2#

So:

#3k^2#