How do you simplify #tan^2 x- cot^2x#?

3 Answers
Nov 6, 2015

#tan^2x-cot^2x=(sin^2x)/(cos^2x)-(cos^2x)/(sin^2x)#

#=(sin^4x-cos^4x)/(sin^2x*cos^2x)#

#=((sin^2x+cos^2x)(sin^2x-cos^2x))/((1-cos^2x)(1-sin^2x)#

#=((1)(sinx+cosx)(sinx-cosx))/((1+cosx)(1-cosx)(1+sinx)(1-sinx)#

Does not appear to be able to simplify any further.

Mar 26, 2017

#tan^2x-cot^2x = -4csc(2x)cot(2x)#

Explanation:

#tan^2x-cot^2x#

#= sin^2(x)/cos^2(x) - cos^2(x)/sin^2(x)#

#= (sin^4(x)-cos^4(x))/(cos^2(x)sin^2(x))#

#= ((sin^2x+cos^2x)(sin^2x-cos^2x)) / (cos(x)sin(x))^2#

#= ((1)(-cos(2x)))/(1/4sin^2(2x))#

#=-4cos(2x)/sin^2(2x)#

#= -4csc(2x)cot(2x)#

Final Answer

Mar 27, 2017

#(sec^2 x - csc^2 x)#

Explanation:

Add 1 and (- 1) into the equation:
#f(x) = (tan^2 x + 1) - (cot^2 x + 1) =#
#f(x) = sec^2 x - csc^2 x#