How do you simplify the product #(a - 6)(a + 8)# and write it in standard form?
1 Answer
Explanation:
For simplifying a quadratic equation into standard form, the F.O.I.L. (first, outside, inside, last) method is often used to expand the brackets. Here is what you will need to know before we start:
#(color(red)a# #color(blue)(-6))(color(orange)a# #color(green)(+8))#
#color(red)a(color(orange)a)#
#=color(purple)(a^2)#
#color(purple)(a^2)# #color(red)(+a)(color(green)8)#
#=color(purple)(a^2)# #color(purple)(+8a)#
#color(purple)(a^2)# #color(purple)(+8a)# #color(blue)(-6)(color(orange)a)#
#=color(purple)(a^2)# #color(purple)(+8a)# #color(purple)(-6a)#
#color(purple)(a^2)# #color(purple)(+8a)# #color(purple)(-6a)# #color(blue)(-6)color(green)((8))#
#=color(purple)(a^2)# #color(purple)(+8a)# #color(purple)(-6a)# #color(purple)(-48)#
#=color(purple)(a^2+2a-48)#