How do you simplify #(w^3-27)/(4w^2-5w-21)#? Algebra Rational Equations and Functions Division of Polynomials 1 Answer Konstantinos Michailidis Feb 3, 2017 Factorizing the fraction we get #(w^3-27)/(4w^2-5w-21)# #((w - 3) (w^2 + 3 w + 9))/((w - 3) (4 w + 7))# #((cancel(w - 3) )(w^2 + 3 w + 9))/((cancel(w - 3)) (4 w + 7))# #(w^2 + 3 w + 9)/(4 w + 7)# Answer link Related questions What is an example of long division of polynomials? How do you do long division of polynomials with remainders? How do you divide #9x^2-16# by #3x+4#? How do you divide #\frac{x^2+2x-5}{x}#? How do you divide #\frac{x^2+3x+6}{x+1}#? How do you divide #\frac{x^4-2x}{8x+24}#? How do you divide: #(4x^2-10x-24)# divide by (2x+3)? How do you divide: #5a^2+6a-9# into #25a^4#? How do you simplify #(3m^22 + 27 mn - 12)/(3m)#? How do you simplify #(25-a^2) / (a^2 +a -30)#? See all questions in Division of Polynomials Impact of this question 1408 views around the world You can reuse this answer Creative Commons License