# How do you simplify (x + 11)(x^2 - 5x + 9)?

Jan 14, 2017

Multiply each term in the parenthesis on the left by each term in parenthesis on the right. She the entire simplification process below:

#### Explanation:

To multiply these two terms you multiply each individual term in the left parenthesis by each individual term in the right parenthesis.

$\left(\textcolor{red}{x} + \textcolor{red}{11}\right) \left(\textcolor{b l u e}{{x}^{2}} - \textcolor{b l u e}{5 x} + \textcolor{b l u e}{9}\right)$ becomes:

$\left(\textcolor{red}{x} \times \textcolor{b l u e}{{x}^{2}}\right) - \left(\textcolor{red}{x} \times \textcolor{b l u e}{5 x}\right) + \left(\textcolor{red}{x} \times \textcolor{b l u e}{9}\right) + \left(\textcolor{red}{11} \times \textcolor{b l u e}{{x}^{2}}\right) - \left(\textcolor{red}{11} \times \textcolor{b l u e}{5 x}\right) + \left(\textcolor{red}{11} \times \textcolor{b l u e}{9}\right)$

${x}^{3} - 5 {x}^{2} + 9 x + 11 {x}^{2} - 55 x + 99$

We can now group and combine like terms:

${x}^{3} - 5 {x}^{2} + 11 {x}^{2} + 9 x - 55 x + 99$

${x}^{3} + \left(- 5 + 11\right) {x}^{2} + \left(9 - 55 x\right) + 99$

${x}^{3} + 6 {x}^{2} - 46 x + 99$