How do you simplify # (x^3+27)/(9x+27) / (3x^2-9x+27)/(4x)#?
1 Answer
Jan 23, 2016
Explanation:
Recall that division is the same as multiplying by the reciprocal. Thus, we can flip the right term and multiply instead of divide.
#=(x^3+27)/(9x+27)((4x)/(3x^2-9x+27))#
Factor each term.
The top left is a sum of cubes.
#=((x+3)(x^2-3x+9))/(9x+27)((4x)/(3x^2-9x+27))#
Factor a
#=((x+3)(x^2-3x+9))/(9(x+3))((4x)/(3x^2-9x+27))#
Cancel the
#=(x^2-3x+9)/(9)((4x)/(3x^2-9x+27))#
Factor a
#=(x^2-3x+9)/(9)((4x)/(3(x^2-3x+9)))#
Notice that the
#=1/9((4x)/3)=(4x)/27#