How do you simplify #(y-x)/(12x^2-12y^2)#?
1 Answer
May 3, 2017
Explanation:
#"factor out "color(blue)"common factor" " of 12 in numerator"#
#rArr(y-x)/(12(x^2-y^2))#
#x^2-y^2" is a "color(blue)"difference of squares"# and factorises in general
#• a^2-b^2=(a-b)(a+b)#
#rArr(y-x)/(12(x-y)(x+y))#
#"factor out " -1" in the numerator"#
#rArr(-cancel((x-y)))/(12cancel((x-y))(x+y))#
#=-1/(12(x+y))to(x!=-y)#