How do you sketch a graph of a quadratic function that has x intercepts 0 and 4?

1 Answer
Jul 5, 2018

Refer to the explanation.

Explanation:

If the x-intercepts are #0# and #4#, the quadratic equation must be:

#y=x(x-4)#

Substitute #0# for #y#.

#0=x(x-4)#

#x=0#

#x-4=0#

#x=4#

The points for the x-intercepts are #(0,0)# and #(4,0)#.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

#y=x^2-4x# is a quadratic equation in standard form:

#y=ax^2+bx+c#,

where:

#a=1#, #b=-4#, #c=0#

To graph a quadratic equation, you need the vertex, y-intercept, x-intercepts, and one or two additional points.

You already have the x-intercepts: #(0,0)# and #(4,0)#

Vertex: maximum or minimum point #(x,y)# of the parabola

To find the x-coordinate of the vertex , use the formula for the axis of symmetry:

#x=(-b)/(2a)#

#x=(-(-4))/(2*1)#

#x=4/2#

#x=2#

To find the y-coordinate of the verte x, substitute the x-coordinate for #x# in the equation and solve for #y#.

#y=2^2-4(2)#

#y=4-8#

#y=-4#

The vertex is #(2,-4)#.

Y-intercept: value of #y# when #x=0#.

Substitute #0# for #x# and solve for #y#.

#y=0^2-4(0)#

#y=0#

The y-intercept is #(0,0)#.

Additional points

Choose values for #x#, substitute them into the equation, and solve for #y#.

Additional Point 1: #x=-1#

#y=(-1)^2-4(-1)#

#y=1+4#

#y=5#

The first additional point is #(-1,5)#.

Additional Point 2: #x=5#

#y=5^2-4(5)#

#y=25-20#

#y=5#

The second additional point is #(5,5)#

Summary

X-intercepts: #(0,0)# and #(4,0)#

Vertex: #(2,-4)#

Y-intercept: #(0,0)#

Additional points: #(-1,5)# and #(5,5)#

Plot the points and sketch a parabola through the points. Do not connect the dots.

graph{y=x^2-4x [-10, 10, -5, 5]}