How do you solve #2(1.01^(5x + 1)) = 5#?

1 Answer
Mar 12, 2016

#x=log_1.01(root(5)(250/101))#

Explanation:

#2(1.01^(5x+1))=5#

#1.01^(5x+1)=2.5#

applying logarithms:

#(5x+1)=log_1.01(2.5)#

#5x=log_1.01(2.5)-1#

#5x=log_1.01(2.5/1.01)#

#x=log_1.01(250/101)/5#

#x=log_1.01(root(5)(250/101))#

or

#x=ln(root(5)(250/101))/ln(1.01)#