# How do you solve 2(2m-5)-6> -36?

Mar 14, 2018

See a solution process below:

#### Explanation:

First, add $\textcolor{red}{6}$ to each side of the inequality to isolate the term with the parenthesis while keeping the inequality balanced:

$2 \left(2 m - 5\right) - 6 + \textcolor{red}{6} > - 36 + \textcolor{red}{6}$

$2 \left(2 m - 5\right) - 0 > - 30$

$2 \left(2 m - 5\right) > - 30$

Next, divide each side of the inequality by $\textcolor{red}{2}$ to eliminate the need for parenthesis while keeping the inequality balanced:

$\frac{2 \left(2 m - 5\right)}{\textcolor{red}{2}} > - \frac{30}{\textcolor{red}{2}}$

$\frac{\textcolor{red}{\cancel{\textcolor{b l a c k}{2}}} \left(2 m - 5\right)}{\cancel{\textcolor{red}{2}}} > - 15$

$2 m - 5 > - 15$

Then, add $\textcolor{red}{5}$ to each side of the inequality to isolate the $m$ term while keeping the inequality balanced:

$2 m - 5 + \textcolor{red}{5} > - 15 + \textcolor{red}{5}$

$2 m - 0 > - 10$

$2 m > - 10$

Now, divide each side of the inequality by $\textcolor{red}{2}$ to solve for $m$ while keeping the inequality balanced:

$\frac{2 m}{\textcolor{red}{2}} > - \frac{10}{\textcolor{red}{2}}$

$\frac{\textcolor{red}{\cancel{\textcolor{b l a c k}{2}}} m}{\cancel{\textcolor{red}{2}}} > - 5$

$m > - 5$