How do you solve #(2x+1) / (x-9) >= 0#?

1 Answer
Mar 1, 2017

The solution is #x in ]-oo, -1/2]uu]9,+oo[#

Explanation:

We solve this inequality with a sign chart

Let #f(x)=(2x+1)/(x-9)#

We can now build the sign chart

#color(white)(aaaa)##x##color(white)(aaaa)##-oo##color(white)(aaaa)##-1/2##color(white)(aaaaaa)##9##color(white)(aaaaaaaa)##+oo#

#color(white)(aaaa)##2x+1##color(white)(aaaa)##-##color(white)(aaaa)##+##color(white)(aaaa)##||##color(white)(aaaa)##+#

#color(white)(aaaa)##x-9##color(white)(aaaa)##-##color(white)(aaaaaa)##-##color(white)(aaa)##||##color(white)(aaaa)##+#

#color(white)(aaaa)##f(x)##color(white)(aaaaaa)##+##color(white)(aaaaa)##-##color(white)(aaa)##||##color(white)(aaaa)##+#

Therefore,

#f(x)>=0# when #x in ]-oo, -1/2]uu]9,+oo[#