How do you solve #4=7-sqrt(33x-2)#?

1 Answer
Jan 14, 2017

Answer:

#x=1/3#

Explanation:

Given:#" "4=7-sqrt(33x-2)#

Swap the 4 with the square root (sign changes)

#sqrt(33x-2)=7-4 " "=" "3#

Square both sides

#33x-2=9#

Add 2 to both sides

#33x=11#

Divide both sides by 33

#x=11/33#

#x=(11 -:11)/(33-:11)= 1/3#
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
#color(blue)("Check")#

#4=7-sqrt(33x-2)#

consider the RHS only

#7-sqrt(33(11/33)-2)#

#7-sqrt(9)#

#4#

Thus LHS=RHS