How do you solve 4p<-2 and 2+p>-5?

1 Answer
Jun 26, 2015

#-7< p < -1/2#

Explanation:

Part 1: #4p<-2#
An inequality remains valid if you divide both sides by the same amount provided that amount is greater than zero.

Dividing both sides by #4# gives
#color(white)("XXXX")##p < -1/2#

Part 2: #2+p>-5#
An inequality remains valid if you subtract the same amount from both sides.

Subtracting #2# from both sides gives
#color(white)("XXXX")##p> -7#

Part 3: Combining with "and"
Inequalities connected with the word "and" must both be true .
#color(white)("XXXX")##p < -1/2 and p > -7#
#color(white)("XXXX")#or (equivalently)
#color(white)("XXXX")##-7 < p < -1/2#