# How do you solve -5(2x-6)+8x=22?

Mar 30, 2018

$x = 4$

#### Explanation:

$- 5 \left(2 x - 6\right) + 8 x = 22$

$\Rightarrow - 10 x + 30 + 8 x = 22$

$\Rightarrow 30 - 2 x = 22$

$\Rightarrow 2 x = 8$

$\Rightarrow x = \frac{8}{2}$

$\therefore x = 4$

Hope this helps :)

Mar 30, 2018

$x = 4$

#### Explanation:

$- 5 \left(2 x - 6\right) + 8 x = 22$ (distribute -5 to the numbers in the brackets)

$- 10 x + 30 + 8 x = 22$ (Combine like terms)

$- 2 x + 30 = 22$ (Subtract 30 from both sides)

$- 2 x = - 8$ (Divide both sides by -2 to isolate the variable)

$x = 4$

Check the answer by plugging it into the original equation:

$- 5 \left(2 \left(4\right) - 6\right) + 8 \left(4\right) = 22$

$- 5 \left(8 - 6\right) + 32 = 22$

$- 5 \left(2\right) + 32 = 22$

$- 10 + 32 = 22$

$22 = 22$

Mar 30, 2018

$x = 4$

#### Explanation:

$\text{distribute and simplify left side of equation}$

$- 10 x + 30 + 8 x = 22$

$\Rightarrow - 2 x + 30 = 22$

$\text{subtract 30 from both sides}$

$- 2 x \cancel{+ 30} \cancel{- 30} = 22 - 30$

$\Rightarrow - 2 x = - 8$

$\text{divide both sides by } - 2$

$\frac{\cancel{- 2} x}{\cancel{- 2}} = \frac{- 8}{- 2}$

$\Rightarrow x = 4$

$\textcolor{b l u e}{\text{As a check}}$

Substitute this value into the left side of the equation and if equal to the right side then it is the solution.

$- 5 \left(8 - 6\right) + \left(8 \times 4\right) = - 10 + 32 = 22 = \text{ right side}$

$\Rightarrow x = 4 \text{ is the solution}$