First, subtract #color(red)(1/2x)# and #color(blue)(1)# from each side of the equation to isolate the #x# term while keeping the equation balanced:
#1/2x - 1/10 - color(red)(1/2x) - color(blue)(1) <= x + 1 - color(red)(1/2x) - color(blue)(1)#
#1/2x - color(red)(1/2x) - 1/10 - color(blue)(1) <= x - color(red)(1/2x) + 1 - color(blue)(1)#
#0 - 1/10 - color(blue)(10/10) <= 2/2x - color(red)(1/2x) + 0#
#-11/10 <= 1/2x#
Now, multiply each side of the equation by #color(red)(2)# to solve for #x# while keeping the equation balanced:
#color(red)(2) xx -11/10 <= color(red)(2) xx 1/2x#
#-22/10 <= cancel(color(red)(2)) xx 1/color(red)(cancel(color(black)(2)))x#
#-22/10 <= x#
To state the solution in terms of #x# we can reverse or "flip" the inequality:
#x >= -22/10#
Or, in interval form:
#[-22/10, oo)#