# How do you solve and write the following in interval notation: #2x^2+x>=10#?

##### 1 Answer

Jul 3, 2016

#### Explanation:

Bring the inequality to standard form:

First, solve the equation f(x) = 0, to find the 2 real roots.

y = (x - 2)(2x + 5)

The 2 real roots are: 2 and

Figure these 2 real roots on a number line. Since a = 2 > 0, the parabola opens upward. Between the 2 real roots, a part of the parabola is below the x, axis, meaning f(x) < 0.

Out side the interval between the 2 real roots, f(x) > 0.

Solution set by half closed intervals: (-inf., -5/2] and [2, inf.).

The 2 end points (2 and -5/2) are included in the solution set.

Graph on number line.

============== -5/2 --------------- 0 ----------- 2 ===============