How do you solve for Angles A, B, C if a=20 b=30 c=25?

1 Answer
Mar 20, 2018

Answer:

#C~~55.77^@, B~~82.82^@, and, A~~41.41^@#.

Explanation:

By the cosine formula, we have,

#cosA=(b^2+c^2-a^2)/(2bc)#,

#=(30^2+25^2-20^2)/(2*30*25)#,

#=1125/1500#.

# rArr cosA=0.75#.

#:. A=arc cos 0.75~~41.41^@#.

#B=arc cos ((c^2+a^2-b^2)/(2ca))#,

#=arc cos((625+400-900)/(2*25*20))#

#=arc cos(0.125)#.

# :. B~~82.82#.

Finally, #C~~180^@-(41.41^@+82.82^2)=55.77^@#.