Let #f(x)=(2(1-x))/(3x+5)#
We build a sign chart
#color(white)(aaaa)##x##color(white)(aaaaaa)##-oo##color(white)(aaaaaa)##-5/3##color(white)(aaaaaa)##1##color(white)(aaaaaaa)##+oo#
#color(white)(aaaa)##3+5x##color(white)(aaaaaaa)##-##color(white)(aaaa)##||##color(white)(aa)##+##color(white)(aa)##0##color(white)(aaa)##+#
#color(white)(aaaa)##1-x##color(white)(aaaaaaaa)##+##color(white)(aaaa)##||##color(white)(aa)##+##color(white)(aa)##0##color(white)(aaa)##-#
#color(white)(aaaa)##f(x)##color(white)(aaaaaaaaa)##-##color(white)(aaaa)##||##color(white)(aa)##+##color(white)(aa)##0##color(white)(aaa)##-#
Therefore,
#f(x)<=0# when #x in (-oo,-5/3) uu[1, +oo)#
graph{(2-2x)/(3x+5) [-14.24, 14.25, -7.12, 7.12]}