# How do you solve Log_2 x + log_4 x + log_8 x = 11 ?

Then teach the underlying concepts
Don't copy without citing sources
preview
?

Write a one sentence answer...

#### Explanation

Explain in detail...

#### Explanation:

I want someone to double check my answer

Describe your changes (optional) 200

6
Apr 26, 2018

$x = 64$

#### Explanation:

As ${\log}_{a} b = \log \frac{b}{\log} a$, we can write ${\log}_{2} x + {\log}_{4} x + {\log}_{8} x = 11$ as

$\log \frac{x}{\log} 2 + \log \frac{x}{\log} 4 + \log \frac{x}{\log} 8 = 11$

or $\log \frac{x}{\log} 2 + \log \frac{x}{2 \log 2} + \log \frac{x}{3 \log 2} = 11$

or $\log \frac{x}{\log} 2 \left(1 + \frac{1}{2} + \frac{1}{3}\right) = 11$

or $\log \frac{x}{\log} 2 \left(\frac{6 + 3 + 2}{6}\right) = 11$

or $\log \frac{x}{\log} 2 \left(\frac{11}{6}\right) = 11$

or $\log \frac{x}{\log} 2 = 11 \times \frac{6}{11} = 6$

i.e. $\log x = 6 \log 2 = \log {2}^{6}$

and $x = {2}^{6} = 64$

##### Just asked! See more
• 23 minutes ago
• 24 minutes ago
• 24 minutes ago
• 27 minutes ago
• 40 seconds ago
• 2 minutes ago
• 5 minutes ago
• 8 minutes ago
• 16 minutes ago
• 23 minutes ago
• 23 minutes ago
• 24 minutes ago
• 24 minutes ago
• 27 minutes ago