How do you solve #root4(2x)-13=-9#?

1 Answer
Apr 25, 2017

Answer:

#x=128#

Explanation:

#root4(2x)-13=-9#

Add #13# to both sides

#root4(2x)cancel(-13)cancel(+13)=-9+13#

#root4(2x)=4#

Now we are going to raise both sides of the equation to the power of #4# so we can get rid of that #"root" 4#

#(root4(2x))^4=(4)^4#

[Exponent cancels with root of equal power]

#2x=256#

Divide both sides by #2#

#(2x)/2=256/2#

#(cancel2x)/cancel2=256/2#

#x=128#