How do you solve #sin(2x)cos(x)=sin(x)#?

2 Answers
May 26, 2018

#x=npi,2npi+-(pi/4), and 2npi+-((3pi)/4)# where #n in ZZ#

Explanation:

#rarrsin2xcosx=sinx#

#rarr2sinx*cos^2x-sinx=0#

#rarrsinx(2cos^2x-1)=0#

#rarrrarrsinx*(sqrt2cosx+1)*(sqrt2cosx-1)=0#

When #sinx=0#

#rarrx=npi#

When #sqrt2cosx+1=0#

#rarrcosx=-1/sqrt2=cos((3pi)/4)#

#rarrx=2npi+-((3pi)/4)#

When #sqrt2cosx-1=0#

#rarrcosx=1/sqrt2=cos(pi/4)#

#rarrx=2npi+-(pi/4)#

May 26, 2018

#x = npi, pi/4 + npi, (3pi)/4 + npi# where #n in ZZ#

Explanation:

We have,

#color(white)(xxx)sin2xcosx = sinx#

#rArr 2sinxcosx xx cosx = sinx# [As, #sin 2x = 2sinxcosx#]

#rArr 2sinxcos^2x - sin x = 0#

#rArr sinx(2cos^2 - 1) = 0#

Now,

Either,

#sin x = 0 rArr x = sin^-1(0) = npi#, where #n in ZZ#

Or,

#color(white)(xxx)2cos^2x - 1 = 0#

#rArr 2cos^2x - (sin^2x + cos^2x) = 0# [As #sin^2x + cos^2 x = 1#]

#rArr 2cos^2x-sin^2x-cos^2x = 0#

#rArr cos^2x - sin^2x = 0#

#rArr (cosx + sin x)(cos x - sin x) = 0#

So, Either #cos x - sin x = 0 rArr cos x = sin x rArr x = pi/4 +- npi#, where #n in ZZ#

Or,

#cos x + sin x = 0 rArr cos x = -sinx rArr x = (3pi)/4 +- npi#, where #n in ZZ#

So, Summing it all up,

#x = npi, pi/4 +- npi, (3pi)/4 +- npi#, where #n in ZZ#