How do you solve #sin(x) = cos(x)#?

2 Answers
Mar 18, 2016

#pi/4#

Explanation:

#sin x = cos (pi/2 - x) # --> complementary arcs
Therefor,
#cos (pi/2 - x) = cos x#
#(pi/2 - x) = +- x#
a. #pi/2 - x = x# --> #2x = pi/2# --> #x = pi/4#
b. #pi/2 - x = - x# (undetermined)
Answer: #x = pi/4#
Check.
#x = pi/4# --> #sin x = cos x = sqrt2/2.# OK

Mar 18, 2016

General solution of #sinx=cosx# is #x=npi+pi/4#, where #n# is an integer.

Explanation:

Dividing the equation #sinx=cosx#, by #sinx# on both sides

#sinx/cosx=1# or

#tanx=1=tan(pi/4)#

Hence, general solution of #sinx=cosx# is #x=npi+pi/4#, where #n# is an integer.