How do you solve #sin4x+2sin2x=0#?
1 Answer
Dec 22, 2016
Explanation:
Expand using
#sin(2x + 2x) + 2sin2x= 0#
#sin2xcos2x + sin2xcos2x + 2sin2x = 0#
#2sin2xcos2x + 2sin2x = 0#
#2sin2x(cos2x + 1) = 0#
Case 1:
Use
#2(2sinxcosx) = 0#
#4sinxcosx= 0#
Whenever
Case 2:
Use the identity
#2cos^2x - 1 + 1 = 0#
#2cos^2x = 0#
#cos^2x= 0#
#cosx =0#
#x = pi/2 + 2pin# and#(3pi)/2 + 2pin#
Hopefully this helps!