How do you solve #sinx=-cosx# in the interval #0<=x<=2pi#?

1 Answer
Mar 7, 2018

#x=(3pi)/4# or #(7pi)/4#

Explanation:

As #sinx=-cosx#, we have

#sinx+cosx=0#

or #sinx/sqrt2+cosx/sqrt2=0#

or #sinxcos(pi/4)+cosxsin(pi/4)=0#

or #sin(x+pi/4)=0#=sin0#

or #sin(x+pi/4)=sin0# or #sinpi# or #sin2pi#

Hence possible values of #x# in the interval #0<=x<=2pi# is

#x=pi-pi/4=(3pi)/4# or #x=2pi-pi/4=(7pi)/4#

Alternatively #sinx=-cosx=>tanx=-1#

i.e. #x=(3pi)/4# or #(7pi)/4#

An easier way could be that as #sinx=-cosx#

#sinx/cosx=-1# or #tanx=tan(-pi/4)#

and as tan ratio has a cylce of #pi#

#x={-pi/4,(3pi)/4,(7pi)/4,......}# and possible values of #x# in the interval #0<=x<=2pi# are #(3pi)/4# and #(7pi)/4#.