As #sinx=-cosx#, we have
#sinx+cosx=0#
or #sinx/sqrt2+cosx/sqrt2=0#
or #sinxcos(pi/4)+cosxsin(pi/4)=0#
or #sin(x+pi/4)=0#=sin0#
or #sin(x+pi/4)=sin0# or #sinpi# or #sin2pi#
Hence possible values of #x# in the interval #0<=x<=2pi# is
#x=pi-pi/4=(3pi)/4# or #x=2pi-pi/4=(7pi)/4#
Alternatively #sinx=-cosx=>tanx=-1#
i.e. #x=(3pi)/4# or #(7pi)/4#
An easier way could be that as #sinx=-cosx#
#sinx/cosx=-1# or #tanx=tan(-pi/4)#
and as tan ratio has a cylce of #pi#
#x={-pi/4,(3pi)/4,(7pi)/4,......}# and possible values of #x# in the interval #0<=x<=2pi# are #(3pi)/4# and #(7pi)/4#.