How do you solve #sqrt(x-4) - 4=6#?

2 Answers
Jan 26, 2016

Answer:

#x=104#

Explanation:

#sqrt(x-4)-4=6#

#rarrsqrt(x-4)=6+4=10#

Square both sides

#rarr(sqrt(x-4))^2=10^2#

#rarrx-4=100#

#rarrx=100+4=104#

Answer:

#x = 104#

Explanation:

#Add# #4# #t##o# #b##oth# #sides#

#Hence# #sqrt(x - 4) = 10#

#Square# #b##oth# #sides:#

#rarr (sqrt(x - 4 ))^2 = 10^2 #

#So# #x - 4 = 100# #rArr x = 104#