How do you solve #(tanx-1)(2sinx+1)=0#?
1 Answer
May 15, 2016
degrees:
radians:
Explanation:
Given,
#(tanx-1)(2sinx+1)=0#
In order for the equation to equal to
#tanx-1=0color(white)(XXXXXXX)2sinx+1=0#
#tanx=1color(white)(XXXXXXXXX)sinx=-1/2#
#x=color(green)(ul(color(black)(45^@)))# or#color(green)(ul(color(black)(225^@)))color(white)(XXXXXX)x=color(green)(ul(color(black)(210^@)))# or#color(green)(ul(color(black)(330^@)))#
#color(white)(XXx)color(green)(ul(color(black)(pi/4)))# or#color(green)(ul(color(black)(5/4pi)))color(white)(XXXXXXXXXx)color(green)(ul(color(black)(7/6pi)))# or#color(green)(ul(color(black)(11/6pi)))#