How do you solve the triangle given a=345, b=648, c=442?

1 Answer
Oct 12, 2017

Answer:

Solution of triangle: #a=345,b=648, c=442, /_A~~ 29.97^0 ,#
#/_B~~ 110.24^0 , /_C~~ 39.79^0#

Explanation:

Sides of triangle are #a=345,b=648, c=442#

#cos(A) = (b^2 + c^2 − a^2)/(2bc) = (648^2 + 442^2 − 345^2)/(2*648*442) = 0.8663#
# :. /_A=cos^-1(0.8663)~~ 29.97^0#

#cos(B) = (c^2 + a^2 − b^2)/(2ca) = (442^2 + 345^2 − 648^2)/(2*442*345) = -0.34597#
# :. /_B=cos^-1(-0.34597)~~ 110.24^0#

#/_C ~~180-( 29.97+110.24) ~~ 39.79^0#

Solution of triangle: #a=345,b=648, c=442, /_A~~ 29.97^0 ,#
#/_B~~ 110.24^0 , /_C~~ 39.79^0# [Ans]