How do you solve #( x-1) /3 - (x-1) /2 = 6#?

1 Answer
Oct 12, 2016

#x=-35#

Explanation:

First, we have to compute the common denominator.
The common denominator of the prime numbers #3# and #2# is their product #color(red)6#

#(x-1)/3-(x-1)/2=6#

#rArr(color(red)2(x-1))/color(red)6-(color(red)3(x-1))/color(red)6=6#

#rArr(2(x-1)-3(x-1))/6=6#
#rArr2(x-1)-3(x-1)=6*6# cross multiplication
#rArr2x-2-3x+3=36#
#rArr2x-3x-2+3=36#
#rArr-x+1=36#
#rArr-x=36-1#
#rArr-x=35#
#rArrx=-35#