The quadratic formula states:
For #color(red)(a)x^2 + color(blue)(b)x + color(green)(c) = 0#, the values of #x# which are the solutions to the equation are given by:
#x = (-color(blue)(b) +- sqrt(color(blue)(b)^2 - (4color(red)(a)color(green)(c))))/(2 * color(red)(a))#
Substituting:
#color(red)(1)# for #color(red)(a)#
#color(blue)(8)# for #color(blue)(b)#
#color(green)(15)# for #color(green)(c)# gives:
#x = (-color(blue)(8) +- sqrt(color(blue)(8)^2 - (4 * color(red)(1) * color(green)(15))))/(2 * color(red)(1))#
#x = (-color(blue)(8) +- sqrt(64 - 60))/2#
#x = (-color(blue)(8) - sqrt(4))/2# and #x = (-color(blue)(8) + sqrt(4))/2#
#x = (-color(blue)(8) - 2)/2# and #x = (-color(blue)(8) + 2)/2#
#x = (-10)/2# and #x = (-6)/2#
#x = -5# and #x = -3#
The Solution Set Is: #x = {-5, -3}#