How do you tell whether the graph opens up or down, find the vertex, and find the axis of symmetry of #y=(x+3)(x+1)#?

1 Answer
Jul 5, 2017

#"see explanation"#

Explanation:

#"for a quadratic in standard form " y=ax^2+bx+c#

#• " if " a>0" then graph opens up " uuu#

#• " if " a<0" then graph opens down " nnn#

#y=(x+3)(x+1)#

#"expand the factors using FOIL"#

#rArry=x^2+4x+3larrcolor(blue)" in standard form"#

#"with " a=1,b=4,c=3#

#"since " a>0" then graph opens up"#

#"the x-coordinate of the vertex " x_(color(red)"vertex")=-b/(2a)#

#rArrx_(color(red)"vertex")=-4/2=-2#

#"substitute into equation for y-coordinate of vertex"#

#rArry_(color(red)"vertex")=(-2)^2+4(-2)+3=-1#

#rArrcolor(magenta)"vertex "=(-2,-1)#

#"the axis of symmetry passes through the vertex is a"#
#"vertical line with equation"#

#x=-2#
graph{(y-x^2-4x-3)(y-1000x-2000)=0 [-10, 10, -5, 5]}