How do you tell whether the graph opens up or down, find the vertex, and find the axis of symmetry of #y=(x+3)(x+1)#?
1 Answer
Jul 5, 2017
Explanation:
#"for a quadratic in standard form " y=ax^2+bx+c#
#• " if " a>0" then graph opens up " uuu#
#• " if " a<0" then graph opens down " nnn#
#y=(x+3)(x+1)#
#"expand the factors using FOIL"#
#rArry=x^2+4x+3larrcolor(blue)" in standard form"#
#"with " a=1,b=4,c=3#
#"since " a>0" then graph opens up"#
#"the x-coordinate of the vertex " x_(color(red)"vertex")=-b/(2a)#
#rArrx_(color(red)"vertex")=-4/2=-2#
#"substitute into equation for y-coordinate of vertex"#
#rArry_(color(red)"vertex")=(-2)^2+4(-2)+3=-1#
#rArrcolor(magenta)"vertex "=(-2,-1)#
#"the axis of symmetry passes through the vertex is a"#
#"vertical line with equation"#
#x=-2#
graph{(y-x^2-4x-3)(y-1000x-2000)=0 [-10, 10, -5, 5]}