#"given a quadratic in standard form"#
#•color(white)(x)y=ax^2+bx+c color(white)(x)a!=0#
#• " if "a>0" then graph opens up "uuu#
#• " if "a<0" then graph opens down "nnn#
#"here "y=-(x+1)(x-3)#
#color(white)(xxxxx)=-(x^2-2x-3)#
#color(white)(xxxxx)=-x^2+2x+3larrcolor(blue)"in standard form"#
#a<0rArr" graph opens down"#
#"the axis of symmetry is at the midpoint of the zeros and"#
#"the vertex lies on the axis of symmetry"#
#"let y = 0 to find zeros"#
#rArr-(x+1)(x-3)=0#
#"equate each factor to zero and solve for x"#
#x+1=0rArrx=-1#
#x-3=0rArrx=3#
#"midpoint "=(-1+3)/2=1#
#rArrcolor(magenta)"axis of symmetry is "x=1#
#"x = 1 is also the x-coordinate of the vertex"#
#"substitute "x=1" into the equation for y"#
#y=-(2)(-2)=4#
#rArrcolor(magenta)"vertex "=(1,4)#
graph{(y+x^2-2x-3)(y-1000x+1000)((x-1)^2+(y-4)^2-0.04)=0 [-10, 10, -5, 5]}