How do you test the improper integral #int x^(-1/2) dx# from #[1,oo)# and evaluate if possible?

1 Answer
Jun 19, 2017

#int_1^oo x^(-1/2)dx = oo#

Explanation:

Based on the integral test the convergence of the integral:

#int_1^oo x^(-1/2)dx#

is equivalent to the convergence of the series:

#sum_(n=1)^oo 1/n^(1/2)#

which we can immediately see is divergent based on the #p#-series criteria.

In fact, the integrand function is defined and continuous in #[1,oo)#, so:

#int_1^oo x^(-1/2)dx = lim_(t->oo) int_1^t x^(-1/2)dx#

#int_1^oo x^(-1/2)dx = lim_(t->oo) [x^(1/2)/(1/2)]_1^t#

#int_1^oo x^(-1/2)dx = lim_(t->oo) 2sqrt(t)-2 = oo#