How do you use partial fractions to find the integral #int (e^x)/((e^(2x)+1)(e^x-1))dx#?

1 Answer
Mar 5, 2017

The integral equals #-1/2arctan(e^x) - 1/2ln((e^x + 1)/|e^x- 1|)+ C#

Explanation:

First of all, the integral can be rewritten as

#int e^x/(((e^x)^2 + 1)(e^x- 1)) dx#

Now let #u = e^x#. Then #du = e^xdx# and #dx = (du)/e^x#.

#int e^x/((u^2+ 1)(u - 1)) * (du)/e^x#

#int 1/((u^2 + 1)(u - 1))du#

Now use partial fractions.

#(Au + B)/(u^2 + 1) + C/(u - 1) = 1/((u^2 + 1)(u - 1))#

#(Au + B)(u - 1) + C(u^2+ 1) = 1#

#Au^2 + Bu - B - Au + Cu^2 + C = 1#

#(A + C)u^2 + (B - A)u + (C - B) = 1#

We now write a system of equations:

#{(A + C = 0), (B - A = 0), (C - B = 1):}#

We can simplify to #C = -A# and #B = A# and substitute into the third equation.

#-A - A = 1#

#-2A = 1#

#A = -1/2#

This implies that #C = 1/2# and #B = -1/2#.

Our integral becomes:

#int(-1/2u - 1/2)/(u^2 + 1) + (1/2)/(u - 1)du#

#int (-1/2(u + 1))/(u^2 + 1) + 1/(2(u - 1))du#

#int -1/2(u + 1)/(u^2 + 1) + 1/(2(u - 1)) du#

#-1/2int (u + 1)/(u^2 + 1)du+ int 1/(2(u - 1))du#

#-1/2int u/(u^2 + 1) + 1/(u^2 + 1) du + int 1/(2(u - 1))du#

#-1/2arctanu - 1/2ln(u^2 + 1) + 1/2ln|u - 1| +C#

#-1/2arctan(e^x) - 1/2ln(e^x + 1) + 1/2ln|e^x - 1| + C#

#-1/2arctan(e^x) - 1/2(ln(e^x+ 1) - ln|e^x - 1|) + C#

#-1/2arctan(e^x) - 1/2ln((e^x + 1)/|e^x- 1|)+ C#

Practice Exercises

Solve the following integrals using partial fractions. You may use a u-substitution to begin.

a) #int (4x + 1)/(4x^2 + 12x + 9)dx#

b) #int sinx/(cosx(sinx - 1))dx#

Solutions

a) #ln|2x + 3| + 5/(4x + 6) + C#
b) #1/4ln|(sinx + 1)/(1 - sinx)| + 1/(2(sinx - 1)) + C#

Hopefully this helps!